

Surface passivation of textured c-Si wafers by low-T PECVD a-Si:H

Igor P. Sobkowicz^{[1][2]}, Antoine Salomon^[1] and Pere Roca i Cabarrocas^[2]

[1] Total S.A. – Gas & Power, Tour Coupole – 2 place Jean Millier – La Défense 6, 92078 Paris La Défense [2]Laboratoire de Physique des Interfaces et Couches Minces, Ecole Polytechnique, 91128 Palaiseau Cedex

a-Si:H as a passivating layer

Technical characteristics

- → high Voc (Sanyo 745mV) due to the E_g difference [1]
- → high efficiency ~24%
- outstanding passivation of the wafer surface...

Cost effectiveness

- → use of thin wafers (<100µm)
- → low-T PECVD processes,
- → Si materials...

(p+) a-Si:H E_u ≈ 1.8 eV Wafer (n) c-Si (n+) a-Si:H ΔE_V $E_g = 1.12 \text{ eV}$ Schematic band diagram of a HJ solar cell

Texturing for a higher J_{sc}

Light-trapping enhances cell performances

- → chemical texturing (KOH...)
- pyramid-shaped landscapes

Minority carrier density (cm⁻³)

<111> orientation study

Chemical texturing reveals <111> facets of the c-Si crystalline wafer

- → study of the passivation on <111>-oriented flat c-Si surfaces
- → better understanding of textured wafer passivation

Detection of epitaxial centers: TEM

- → epitaxial centers in the interlayer phase are probably at the origin of high Rs and low FF
- → need for an a-SiC:H buffer layer to kill epitaxy on <100> c-Si. No such need on <111> surfaces

HR-TEM micrograph of the a-Si:H/c-Si heterointerface [2]

<100> regions after chemical etching

→ even small <100> regions in pyramid valleys can foster epitaxial centers growth [2]

HR-TEM picture showing epi-Si in a valley [2]

→ TEM imaging to get a deeper understanding of the role of the a-SiC:H buffer layer in the case of textured substrates

Experimental Work &Prospects

Deposition process

→ a-Si:H layers are deposited in the ARCAM 13,56 MHz RF PECVD home-made reactor at the PICM lab

→ processes are being transfered to our new PECVD cluster tool "CLUSTY"

TOTAL new cluster tool "CLUSTY" at the PICM lab

Prospects

→ understand <111> deposition chemistry in order to avoid high R_s coming from epi-Si centers

Typical 2x2 cm2 study cell

- → optimize specific recipes for i, n+ and p+ layers on <111> c-Si
- → transfer recipes on textured wafers

Technical challenges

- → transfer recipes to new PECVD reactor
- \rightarrow (i), (n+) and (p+)a-Si:H

ITO's unexpected impact

→ RF-PVD ITO deposition process generates passivation losses up to 76% on our samples

- even if these losses can be partially recovered through annealing[3], irreversible structural changes occur[4]
- understanding these changes could lead to better layer qualities
- \rightarrow higher η %? ...

References

- [1] S. De Wolff et al., Green, Vol. 2 (2012), pp. 7–24
- [2] S. Olibet, PhD thesis, 2008
- [3] D. Zhang et al./Energy Procedia 8 (2011) 207-213
- [4] B. Demaurex et al., Applied Physics Letters 101, 171604 (2012)