OBJECTIVES

We propose a quantitative analysis of loss mechanisms occurring in Luminescent Sheet Concentrators (LSC) and a simple scheme explaining interactions between loss mechanisms.

Concentrations systems and LSC

Imaging concentrators (Fresnel lens, dish, parabolic mirrors ...):
- Optical efficiency = 80% and concentration factor higher than 500
- Sun tracker required (expensive)
- Only direct light component concentrated (in temperate area, diffuse light component can reach 40% of the total light)

LSC concentrators:
- Both direct and diffuse light components are concentrated \(\Rightarrow \) no expensive sun tracker required
- Cost low
- Optical efficiency highly dependent on the coverage fraction \(f \) and LSC parameters non ideals.

LSC and dye description

Performances for an idealized LSC:

Optical efficiency highly dependent on the coverage fraction (\(f \) and LSC parameters)

Illustration of non ideality consequence

- High sensitivity : \(R_{\text{mirror}} = 0.99 \Rightarrow c_{\text{max}} = 100 \)
- Hierarchy on LSC parameters : \(R_{\text{mirror}} \) more critical than PLQY
- Interdependency : loss mechanism interdependent

Realistic system

Loss hierarchy depends on \(f \) ... and on LSC parameters themselves

LSC parameters impact ALL loss mechanisms through statistical data (MBEOs)

Simple equations to assess loss mechanisms influence:

\[
\begin{align*}
L_{\text{ext}} &= \left(\frac{\int_0^\infty AM(\lambda) \cdot R_{\text{front}}(\lambda) d\lambda}{\int_0^\infty AM(\lambda) d\lambda} \right) \cdot I_{\text{in}} \\
L_{\text{PLQY}} &= (1 - \text{PLQY}^{\text{abs}}) \\
L_{\text{back}} &= 1 - \left(1 - \cos(\theta) \right) \left(1 - R_{\text{back}}^{\text{hitback}} \right) \\
L_{\text{matrix}} &= (1 - \exp(-\alpha_{\text{matrix}} d_{\text{dis}})) \\
G_{\text{conv. photon}} &= (1 - (1 - f) \cdot \text{hitback})
\end{align*}
\]

Equations validation

Conclusions and perspectives

- Modeling enables to discriminate loss causes
- Strong sensitivity to non idealities
- No generality : loss hierarchy depends on LSC parameters
- MBEO \(\Rightarrow \) key element to understand LSC interdependencies
- Manufacturing LSC to corroborate modeling (under progress)
- Determine MBEO expressions depending only on LSC parameters